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GP REGRESSION
A Gaussian process (GP) is a stochastic process
{f(x) : x ∈ X}. In a Bayesian nonparametric re-
gression setting, GP with kernel K(·, ·) is used as
a prior on a function as:

Y = f(x) + ε

f(·) ∼ GP(µ(·), K(·, ·))

ε ∼ N(0, σ
2
).

The posterior distribution can be made tractable
by assuming normally distributed error term.
The posterior predictive distribution for test
points X∗ is a multivariate normal distribution
with following mean and covariance matrix.
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GOAL
Functional data (FD) refers to trajectories (curves)
observed from study subjects over a domain such
as time and/or space. In many cases, trajectories
are observed at domain points that vary widely
across subjects giving rise to "sparse" functional
data. Analyzing sparse FD is more challenging
than regular FD (traditionally spline and func-
tional principal component-based models are
used).

Gaussian stochastic processes provide a more
flexible tool for studying sparse FD’s. The goal
of this project regarding sparse FD is as follows

• Propose a general (sparse/non-sparse) FD
model accounting for within and between
subject variations in the curves within a
Bayesian framework using the Gaussian
process (GP) prior over the space of func-
tions.
• Estimate the model parameters and derive

the posterior distribution.
• Use of the posterior distribution for estimat-

ing the mean trajectory, and perform super-
vised classification.

BAYESIAN MODEL FOR SPARSE FUNCTIONAL DATA

We assume that the functional curve (response over time t) produced by the jth subject is given by a
stochastic process Yj(t) of the form:

Yj(t) = µ(t) + gj(t) + εj

gj(·) ∼ GP(0,Ω(·, ·))

εj ∼ N(0, σ
2
),

where, µ(t) is the fixed mean function for the population, g(t) is a random component that accounts for
the subject’s variation from the overall mean function (think mixed effects) and finally ε is the i.i.d nor-
mally distributed measurement error. We impose a GP prior on the mean function µ(t) with covariance
function Σ(·, ·).

µ ∼ GP(0,Σ(·, ·)).
A vector-matrix representation of the whole observed data leads to compact and easier derivation of
further results. 
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Y = µ + g + ε

Estimation: Hyperparameters θΣ, θΩ and error variance σ2 are estimated by maximizing the marginal
likelihood function where the marginal likelihood is Y ∼MN(0,K = Cov(µ) + Cov(g) + Cov(ε)).

Posterior: Due to the Gaussian assumption, we can derive the exact tractable posterior distribution for
some test time points t∗.

Y
∗|Y , t, t∗ ∼MN(µp = K

∗
K
−1
y,Σp = K

∗∗ −K∗K−1
K
′∗

).

Where K∗ = Σ′(t∗, t), K∗∗ = Σ(t∗, t∗) + Ω(t∗, t∗) + σ2I .

CLASSIFICATION
Further, our method can perform supervised clas-
sification of sparse/non-sparse FD using a dis-
criminant analysis approach. The steps of clas-
sification are:

• Estimate separate models for each of the
class.

• For a new test curve (observed at any time
points), compute the posterior distribution
(mean and covariance).

• Compute posterior densities for each class
and apply Bayes’ classifier.

We apply our Bayesian method on spinal bone
mineral density data and classify subjects to 4
ethnic groups. The following table shows the
number of correct classifications when only 153
female subjects were considered. Our model out-
performs functional linear discriminant analysis
(FLDA) and functional robust support vector
machine (FSVM) (for certain kernels).

Bayesian Method FLDA RSVMKernel Gaussian Laplace Matern 5/2 Matern 3/2
Correct 68 81 70 72 63 71

BAYESIAN SMOOTHING

Suppose observations from the jth subject are available on time points (tj1 , tj2 , . . . , tjnj
) (discrete and

varying). Parameters are estimated using all available observations on a pooled grid. The mean function
on a desirable time grid can be estimated by the posterior mean, while simply plugging-in the grid as
test time points on the posterior distribution. The average squared error (ASE) of our method (with
different kernels) compared to FPCA on simulated datasets is presented below.

Bayesian Smoothing FPCAASE Gaussian Laplace Matern 5/2 Matern 3/2
Linear 0.0060 0.0080 0.0045 0.0049 0.0099

Periodic 0.0071 0.0100 0.0068 0.0074 0.0191

Table 1: Average Squared Error (ASE) by fitting our method with different kernels and FPCA.
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